Most things around us are either in motion or continuously changing. Even the seemingly firm Earth underneath our feet is in fact spinning around its axis, revolving around the Sun, and traveling (together with the Sun) around the center of our Milky Way galaxy. The air we breathe is composed of trillions of molecules that move ceaselessly and randomly. At the same time, plants grow, radioactive materials decay, the atmospheric temperature rises and falls both daily and with the seasons, and the human life expectancy keeps increasing. This cosmic restlessness in itself, however, did not stump mathematics. The branch of mathematics called calculus was introduced by Newton and Leibniz precisely to permit a rigorous analysis and an accurate modeling of both motion and change. By now, this incredible tool has become so potent and all encompassing that it can be used to examine problems as diverse as the motion of the space shuttle or the spreading of an infectious disease. Just as a movie can capture motion by breaking it up into a frame-by-frame sequence, calculus can measure change on such a fine grid that it allows for the determination of quantities that have only a fleeting existence, such as instantaneous speed, acceleration, or rate of change.